Publications

Publication

Li, Shaozhi, and Satoshi Okamoto. 2022. “Thermal Hall Effect in the Kitaev-Heisenberg System with Spin-Phonon Coupling.” Physical Review B 106 (2). https://doi.org/10.1103/physrevb.106.024413.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Slagle, Kevin. 2021. “Testing Quantum Mechanics Using Noisy Quantum Computers.” arXiv. https://doi.org/10.48550/ARXIV.2108.02201.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Slagle, Kevin. 2021. “Fast Tensor Disentangling Algorithm.” SciPost Physics 11 (3). https://doi.org/10.21468/scipostphys.11.3.056.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Zhang, Shang-Shun, Gábor B. Halász, and Cristian D. Batista. 2021. “Theory of the Kitaev Model in a [111] Magnetic Field.” ArXiv. https://doi.org/10.48550/ARXIV.2104.02892.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Thomson, Alex, Ina Sorensen, Stevan Nadj-Perge, and Jason Alicea. 2021. “Gate-Defined Wires in Twisted Bilayer Graphene: from Electrical Detection of Inter-Valley Coherence to Internally Engineered Majorana Modes.” ArXiv. https://doi.org/10.48550/ARXIV.2105.02891.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Slagle, Kevin, David Aasen, Hannes Pichler, Roger S. K. Mong, Paul Fendley, Xie Chen, Manuel Endres, and Jason Alicea. 2021. “Microscopic Characterization of Ising Conformal Field Theory in Rydberg Chains.” Physical Review B 104 (23). https://doi.org/10.1103/physrevb.104.235109.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Scheie, Allen, Pontus Laurell, Paul A. McClarty, Garrett E. Granroth, Matt B. Stone, Roderich Moessner, and Stephen E. Nagler. 2021. “Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium.” ArXiv. https://doi.org/10.48550/ARXIV.2107.11372.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Scheie, A. O., E. A. Ghioldi, J. Xing, J. A. M. Paddison, N. E. Sherman, M. Dupont, L. D. Sanjeewa, et al. 2021. “Witnessing Quantum Criticality and Entanglement in the Triangular Antiferromagnet KYbSe$_2$.” arXiv. https://doi.org/10.48550/ARXIV.2109.11527.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Samarakoon, Anjana M., Andre Sokolowski, Bastian Klemke, Ralf Feyerherm, Michael Meissner, R. A. Borzi, Feng Ye, et al. 2021. “Structural Magnetic Glassiness in Spin Ice Dy_2Ti_2O_7.” arXiv. https://doi.org/10.48550/ARXIV.2107.12305.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Rosa, P. F. S., A. Weiland, S. S. Fender, B. L. Scott, F. Ronning, J. D. Thompson, E. D. Bauer, and S. M. Thomas. 2021. “Single-Component Superconducting State in UTe2 at 2 K.” ArXiv. https://doi.org/10.48550/ARXIV.2110.06200.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Mu, Sai, Kiranmayi D. Dixit, Xiaoping Wang, Douglas L. Abernathy, Huibo Cao, Stephen E. Nagler, Jiaqiang Yan, et al. 2022. “Role of the Third Dimension in Searching for Majorana Fermions in α−RuCl3 via Phonons.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013067.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Liu, Yue, Kevin Slagle, Kenneth S. Burch, and Jason Alicea. 2021. “Dynamical Anyon Generation in Kitaev Honeycomb Non-Abelian Spin Liquids.” ArXiv. https://doi.org/10.48550/ARXIV.2111.09325.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Klocke, Kai, Joel E. Moore, Jason Alicea, and Gábor B. Halász. 2021. “Thermal Anyon Interferometry in Phonon-Coupled Kitaev Spin Liquids.” ArXiv. https://doi.org/10.48550/ARXIV.2105.05869.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Poniatowski, Nicholas R., Jonathan B. Curtis, Charlotte G. L. Bøttcher, Victor M. Galitski, Amir Yacoby, Prineha Narang, and Eugene Demler. 2021. “Surface Cooper Pair Spin Waves in Triplet Superconductors.” arXiv. https://doi.org/10.48550/ARXIV.2112.12146.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Curtis, Jonathan B., Nicholas R. Poniatowski, Amir Yacoby, and Prineha Narang. 2022. “Proximity-Induced Collective Modes in an Unconventional Superconductor Heterostructure.” arXiv. https://doi.org/10.48550/ARXIV.2201.04635.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Li, Haoxiang, A. Said, J. Q. Yan, D. M. Mandrus, H. N. Lee, S. Okamoto, Gábor B. Halász, and H. Miao. 2021. “Divergence of Majorana-Phonon Scattering in Kitaev Quantum Spin Liquid.” arXiv. https://doi.org/10.48550/ARXIV.2112.02015.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Lefrançois, É., G. Grissonnanche, J. Baglo, P. Lampen-Kelley, J. Yan, C. Balz, D. Mandrus, et al. 2021. “Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate $α$-RuCl$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2111.05493.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Wang, Derek S., Michael Haas, and Prineha Narang. 2021. “Quantum Interfaces to the Nanoscale.” ACS Nano 15 (5): 7879–88. https://doi.org/10.1021/acsnano.1c01255.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Mazza, Alessandro R., Xingyao Gao, Daniel J. Rossi, Brianna L. Musico, Tyler W. Valentine, Zachary Kennedy, Jie Zhang, et al. 2022. “Searching for Superconductivity in High Entropy Oxide Ruddlesden–Popper Cuprate Films.” Journal of Vacuum Science & Technology A 40 (1): 013404. https://doi.org/10.1116/6.0001441.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Multer, Daniel, Jia-Xin Yin, Songtian S. Zhang, Hao Zheng, Tay-Rong Chang, Guang Bian, Raman Sankar, and M. Zahid Hasan. 2021. “Robust Topological State against Magnetic Impurities Observed in the Superconductor PbTaSe2.” Physical Review B 104 (7). https://doi.org/10.1103/physrevb.104.075145.

20211.1.1.02 Controlling and Interacting with Anyons

Kayyalha, Morteza, Leonid P. Rokhinson, and Yong P. Chen. 2021. “Electrical and Superconducting Transport in Topological Insulator Nanoribbons.” Frontiers of Nanoscience, 241–64. https://doi.org/10.1016/b978-0-12-822083-2.00004-6.

20211.1.1.02 Controlling and Interacting with Anyons

Gao, Xingyu, Boyang Jiang, Andres E. Llacsahuanga Allcca, Kunhong Shen, Mohammad A. Sadi, Abhishek B. Solanki, Peng Ju, et al. 2021. “High-Contrast Plasmonic-Enhanced Shallow Spin Defects in Hexagonal Boron Nitride for Quantum Sensing.” Nano Letters 21 (18): 7708–14. https://doi.org/10.1021/acs.nanolett.1c02495.

20211.1.1.02 Controlling and Interacting with Anyons

Varnavides, Georgios, Yaxian Wang, Philip J. W. Moll, Polina Anikeeva, and Prineha Narang. 2022. “Mesoscopic Finite-Size Effects of Unconventional Electron Transport in PdCoO2.” Physical Review Materials 6 (4). https://doi.org/10.1103/physrevmaterials.6.045002.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Wang, Yiping, Ioannis Petrides, Grant McNamara, Md Mofazzel Hosen, Shiming Lei, Yueh-Chun Wu, James L. Hart, et al. 2022. “Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3.” Nature 606 (7916): 896–901. https://doi.org/10.1038/s41586-022-04746-6.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Lefrançois, É., G. Grissonnanche, J. Baglo, P. Lampen-Kelley, J.-Q. Yan, C. Balz, D. Mandrus, et al. 2022. “Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate α−RuCl3.” Physical Review X 12 (2). https://doi.org/10.1103/physrevx.12.021025.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Belopolski, Ilya, Guoqing Chang, Tyler A. Cochran, Zi-Jia Cheng, Xian P. Yang, Cole Hugelmeyer, Kaustuv Manna, et al. 2022. “Observation of a Linked-Loop Quantum State in a Topological Magnet.” Nature 604 (7907): 647–52. https://doi.org/10.1038/s41586-022-04512-8.

20221.1.1.02 Controlling and Interacting with Anyons

Mazza, Alessandro R., Jason Lapano, Harry M. MeyerIII, Christopher T. Nelson, Tyler Smith, Yun‐Yi Pai, Kyle Noordhoek, et al. 2022. “Surface‐Driven Evolution of the Anomalous Hall Effect in Magnetic Topological Insulator MnBi 2 Te 4 Thin Films.” Advanced Functional Materials 32 (28): 2202234. https://doi.org/10.1002/adfm.202202234.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Park, Changwon, and Mina Yoon. 2022. “Topography Inversion in Scanning Tunneling Microscopy of Single-Atom-Thick Materials from Penetrating Substrate States.” Scientific Reports 12 (1). https://doi.org/10.1038/s41598-022-10870-0.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Curtis, Jonathan B., Ioannis Petrides, and Prineha Narang. 2022. “Finite-Momentum Instability of Dynamical Axion Insulator.” arXiv. https://doi.org/10.48550/ARXIV.2206.04711.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Biswas, Somnath, Ioannis Petrides, Robert J. Kirby, Catrina Oberg, Sebastian Klemenz, Caroline Weinberg, Austin Ferrenti, Prineha Narang, Leslie Schoop, and Gregory D. Scholes. 2022. “Photoinduced Band Renormalization Effects in ZrSiS Topological Nodal-Line Semimetal.” arXiv. https://doi.org/10.48550/ARXIV.2206.04654.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Welakuh, Davis M., and Prineha Narang. 2021. “Transition from Lorentz to Fano Spectral Line Shapes in Non-Relativistic Quantum Electrodynamics.” arXiv. https://doi.org/10.48550/ARXIV.2112.05114.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Welakuh, Davis M., and Prineha Narang. 2022. “Nonlinear Optical Processes in Centrosymmetric Systems by Strong-Coupling-Induced Symmetry Breaking.” arXiv. https://doi.org/10.48550/ARXIV.2202.11117.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Welakuh, Davis M., and Prineha Narang. 2022. “Tunable Nonlinearity and Efficient Harmonic Generation from a Strongly Coupled Light-Matter System.” arXiv. https://doi.org/10.48550/ARXIV.2203.00691.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Idzuchi, H., M. Kimata, S. Okamoto, P. Laurell, N. Mohanta, M. Cothrine, S. E. Nagler, D. Mandrus, A. Banerjee, and Y. P. Chen. 2022. “Spin Sensitive Transport in a Spin Liquid Material: Revealing a Robustness of Spin Anisotropy.” arXiv. https://doi.org/10.48550/ARXIV.2204.03158.

20221.1.1.02 Controlling and Interacting with Anyons, 1.1.2.02 QSLM: Quantum Spin Liquid Materials

Laurell, Pontus, Allen Scheie, D. Alan Tennant, Satoshi Okamoto, Gonzalo Alvarez, and Elbio Dagotto. 2022. “Magnetic Excitations, Non-Classicality and Quantum Wake Spin Dynamics in the Hubbard Chain.” arXiv. https://doi.org/10.48550/ARXIV.2203.06332.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Chirolli, Luca, Norman Y. Yao, and Joel E. Moore. 2022. “SWAP Gate between a Majorana Qubit and a Parity-Protected Superconducting Qubit.” arXiv. https://doi.org/10.48550/ARXIV.2205.01410.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Papaj, Michał, and Joel E. Moore. 2022. “Current-Enabled Optical Conductivity of Superconductors.” arXiv. https://doi.org/10.48550/ARXIV.2203.15801.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Guo, Yucheng, Mason Klemm, Ji Seop Oh, Yaofeng Xie, Bing-Hua Lei, Sergey Gorovikov, Tor Pedersen, et al. 2022. “Spectral Evidence for Unidirectional Charge Density Wave in Detwinned BaNi$_2$As$_2$.” arXiv. https://doi.org/10.48550/ARXIV.2205.14339.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Wang, Yiping, Ioannis Petrides, Grant McNamara, Md Mofazzel Hosen, Shiming Lei, Yueh-Chun Wu, James L. Hart, et al. 2021. “Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3.” ArXiv. https://doi.org/10.48550/ARXIV.2112.02454.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Poniatowski, Nicholas R., Jonathan B. Curtis, Charlotte G. L. Bøttcher, Victor M. Galitski, Amir Yacoby, Prineha Narang, and Eugene Demler. 2021. “Surface Cooper Pair Spin Waves in Triplet Superconductors.” arXiv. https://doi.org/10.48550/ARXIV.2112.12146.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Zhang, Qiang, Yuanpeng Zhang, Masaaki Matsuda, Vasile O Garlea, Jiaqiang Yan, Michael A. McGuire, D. Alan Tennant, and Satoshi Okamoto. 2022. “Hidden Local Symmetry Breaking in a Kagome-Lattice Magnetic Weyl Semimetal.” arXiv. https://doi.org/10.48550/ARXIV.2202.08428.

20221.1.1 Topological Electronic Materials, 1.1.1.01 Topological materials prediction, synthesis, materials development

Scheie, Allen, Pontus Laurell, Bella Lake, Stephen E. Nagler, Matthew B. Stone, Jean-Sebastian Caux, and D. Alan Tennant. 2022. “Quantum Wake Dynamics in Heisenberg Antiferromagnetic Chains.” arXiv. https://doi.org/10.48550/ARXIV.2201.03536.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Samarakoon, Anjana M., Pontus Laurell, Christian Balz, Arnab Banerjee, Paula Lampen-Kelley, David Mandrus, Stephen E. Nagler, Satoshi Okamoto, and D. Alan Tennant. 2022. “Extraction of the Interaction Parameters for $α-$RuCl$_3$ from Neutron Data Using Machine Learning.” ArXiv. https://doi.org/10.48550/ARXIV.2202.10715.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Slagle, Kevin, Yue Liu, David Aasen, Hannes Pichler, Roger S. K. Mong, Xie Chen, Manuel Endres, and Jason Alicea. 2022. “Quantum Spin Liquids Bootstrapped from Ising Criticality in Rydberg Arrays.” arXiv. https://doi.org/10.48550/ARXIV.2204.00013.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

McGuire, Michael A., Yun-Yi Pai, Matthew Brahlek, Satoshi Okamoto, and R. G. Moore. 2022. “Electronic and Topological Properties of the Van Der Waals Layered Superconductor PtTe.” ArXiv. https://doi.org/10.48550/ARXIV.2203.06655.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Scheie, A. O., E. A. Ghioldi, J. Xing, J. A. M. Paddison, N. E. Sherman, M. Dupont, L. D. Sanjeewa, et al. 2021. “Witnessing Quantum Criticality and Entanglement in the Triangular Antiferromagnet KYbSe$_2$.” arXiv. https://doi.org/10.48550/ARXIV.2109.11527.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Samarakoon, A. M., D. Alan Tennant, Feng Ye, Qiang Zhang, and S. A. Grigera. 2021. “Integration of Machine Learning with Neutron Scattering: Hamiltonian Tuning in Spin Ice with Pressure.” arXiv. https://doi.org/10.48550/ARXIV.2110.15817.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

McGuire, Michael A., Qiang Zhang, Hu Miao, Wei Luo, Mina Yoon, Yaohua Liu, Turgut Yilmaz, and Elio Vescovo. 2021. “Antiferromagnetic Order and Linear Magnetoresistance in Fe-Substituted Shandite Co3In2S2.” Chemistry of Materials 33 (24): 9741–49. https://doi.org/10.1021/acs.chemmater.1c03596.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Slagle, Kevin, David Aasen, Hannes Pichler, Roger S. K. Mong, Paul Fendley, Xie Chen, Manuel Endres, and Jason Alicea. 2021. “Microscopic Characterization of Ising Conformal Field Theory in Rydberg Chains.” ArXiv. https://doi.org/10.48550/ARXIV.2108.09309.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Rosa, P. F. S., A. Weiland, S. S. Fender, B. L. Scott, F. Ronning, J. D. Thompson, E. D. Bauer, and S. M. Thomas. 2021. “Single-Component Superconducting State in UTe2 at 2 K.” ArXiv. https://doi.org/10.48550/ARXIV.2110.06200.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Dupont, Maxime, and Joel E. Moore. 2021. “Quantum Criticality Using a Superconducting Quantum Processor.” ArXiv. https://doi.org/10.48550/ARXIV.2109.10909.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Sbierski, Björn, Max Geier, An-Ping Li, Matthew Brahlek, Robert G. Moore, and Joel E. Moore. 2021. “Identifying Majorana Vortex Modes via Non-Local Transport.” ArXiv. https://doi.org/10.48550/ARXIV.2107.11226.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Samarakoon, Anjana M., S. A. Grigera, D. Alan Tennant, Alexander Kirste, Bastian Klemke, Peter Strehlow, Michael Meissner, et al. 2022. “Anomalous Magnetic Noise in an Imperfectly Flat Landscape in the Topological Magnet Dy 2 Ti 2 O 7.” Proceedings of the National Academy of Sciences 119 (5). https://doi.org/10.1073/pnas.2117453119.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Mazza, Alessandro R., Xingyao Gao, Daniel J. Rossi, Brianna L. Musico, Tyler W. Valentine, Zachary Kennedy, Jie Zhang, et al. 2022. “Searching for Superconductivity in High Entropy Oxide Ruddlesden–Popper Cuprate Films.” Journal of Vacuum Science & Technology A 40 (1): 013404. https://doi.org/10.1116/6.0001441.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Samarakoon, Anjana M, and D Alan Tennant. 2021. “Machine Learning for Magnetic Phase Diagrams and Inverse Scattering Problems.” Journal of Physics: Condensed Matter 34 (4): 044002. https://doi.org/10.1088/1361-648x/abe818.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Neupert, Titus, M. Michael Denner, Jia-Xin Yin, Ronny Thomale, and M. Zahid Hasan. 2021. “Charge Order and Superconductivity in Kagome Materials.” Nature Physics 18 (2): 137–43. https://doi.org/10.1038/s41567-021-01404-y.

20211.1.1.02 Controlling and Interacting with Anyons

Laurell, Pontus, Allen Scheie, Chiron J. Mukherjee, Michael M. Koza, Mechtild Enderle, Zbigniew Tylczynski, Satoshi Okamoto, Radu Coldea, D. Alan Tennant, and Gonzalo Alvarez. 2021. “Quantifying and Controlling Entanglement in the Quantum Magnet Cs2CoCl4.” Physical Review Letters 127 (3). https://doi.org/10.1103/physrevlett.127.037201.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Sone, Akira, M. Cerezo, Jacob L. Beckey, and Patrick J. Coles. 2021. “Generalized Measure of Quantum Fisher Information.” Physical Review A 104 (6). https://doi.org/10.1103/physreva.104.062602.

20211.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Rimal, Gaurab, Caleb Schmidt, Hussein Hijazi, Leonard C. Feldman, Yiting Liu, Elizabeth Skoropata, Jason Lapano, et al. 2021. “Effective Reduction of PdCoO2 Thin Films via Hydrogenation and Sign Tunable Anomalous Hall Effect.” Physical Review Materials 5 (5). https://doi.org/10.1103/physrevmaterials.5.l052001.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Curtis, Jonathan B., Andrey Grankin, Nicholas R. Poniatowski, Victor M. Galitski, Prineha Narang, and Eugene Demler. 2022. “Cavity Magnon-Polaritons in Cuprate Parent Compounds.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013101.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Zhang, Qiang, Satoshi Okamoto, German D. Samolyuk, Matthew B. Stone, Alexander I. Kolesnikov, Rui Xue, Jiaqiang Yan, Michael A. McGuire, David Mandrus, and D. Alan Tennant. 2021. “Unusual Exchange Couplings and Intermediate Temperature Weyl State in Co3Sn2S2.” Physical Review Letters 127 (11). https://doi.org/10.1103/physrevlett.127.117201.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Wang, Derek S., Christopher J. Ciccarino, Johannes Flick, and Prineha Narang. 2021. “Hybridized Defects in Solid-State Materials as Artificial Molecules.” ACS Nano 15 (3): 5240–48. https://doi.org/10.1021/acsnano.0c10601.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Philbin, John P., and Prineha Narang. 2021. “Computational Materials Insights Into Solid-State Multiqubit Systems.” PRX Quantum 2 (3). https://doi.org/10.1103/prxquantum.2.030102.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Lapano, Jason, Ondrej Dyck, Andrew R. Lupini, Wonhee Ko, Haoxiang Li, Hu Miao, Ho Nyung Lee, et al. 2021. “Van Der Waals Epitaxy Growth of Bi2Se3 on a Freestanding Monolayer Graphene Membrane: Implications for Layered Materials and Heterostructures.” ACS Applied Nano Materials 4 (8): 7607–13. https://doi.org/10.1021/acsanm.1c01170.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Hasan, M. Zahid, Guoqing Chang, Ilya Belopolski, Guang Bian, Su-Yang Xu, and Jia-Xin Yin. 2021. “Weyl, Dirac and High-Fold Chiral Fermions in Topological Quantum Matter.” Nature Reviews Materials 6 (9): 784–803. https://doi.org/10.1038/s41578-021-00301-3.

20211.1.1.02 Controlling and Interacting with Anyons

Yang, Shuyang, Niels B. M. Schröter, Vladimir N. Strocov, Sergej Schuwalow, Mohana Rajpalk, Keita Ohtani, Peter Krogstrup, et al. 2022. “Electronic Structure of InAs and InSb Surfaces: Density Functional Theory and Angle‐Resolved Photoemission Spectroscopy.” Advanced Quantum Technologies 5 (3): 2100033. https://doi.org/10.1002/qute.202100033.

20221.1.1.02 Controlling and Interacting with Anyons

Zhang, Shang-Shun, Gábor B. Halász, and Cristian D. Batista. 2022. “Theory of the Kitaev Model in a [111] Magnetic Field.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-28014-3.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Welakuh, Davis M., and Prineha Narang. 2021. “Transition from Lorentz to Fano Spectral Line Shapes in Non-Relativistic Quantum Electrodynamics.” arXiv. https://doi.org/10.48550/ARXIV.2112.05114.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Kong, Xiangru, Wei Luo, Linyang Li, Mina Yoon, Tom Berlijn, and Liangbo Liang. 2022. “Floquet Band Engineering and Topological Phase Transitions in 1T’ Transition Metal Dichalcogenides.” 2D Materials 9 (2): 025005. https://doi.org/10.1088/2053-1583/ac4957.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Scheie, A., Pontus Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler. 2022. “Spin-Exchange Hamiltonian and Topological Degeneracies in Elemental Gadolinium.” Physical Review B 105 (10). https://doi.org/10.1103/physrevb.105.104402.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Scheie, A., Pontus Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler. 2022. “Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium.” Physical Review Letters 128 (9). https://doi.org/10.1103/physrevlett.128.097201.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Poniatowski, Nicholas R., Jonathan B. Curtis, Amir Yacoby, and Prineha Narang. 2022. “Spectroscopic Signatures of Time-Reversal Symmetry Breaking Superconductivity.” Communications Physics 5 (1). https://doi.org/10.1038/s42005-022-00819-0.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Ness, Hervé, Ivan A. Sadovskyy, Andrey E. Antipov, Mark van Schilfgaarde, and Roman M. Lutchyn. 2022. “Supercurrent Decay in Ballistic Magnetic Josephson Junctions.” Npj Computational Materials 8 (1). https://doi.org/10.1038/s41524-021-00694-3.

20221.1.1.02 Controlling and Interacting with Anyons

Thomson, Alex, Ina M. Sorensen, Stevan Nadj-Perge, and Jason Alicea. 2022. “Gate-Defined Wires in Twisted Bilayer Graphene: From Electrical Detection of Intervalley Coherence to Internally Engineered Majorana Modes.” Physical Review B 105 (8). https://doi.org/10.1103/physrevb.105.l081405.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Klocke, Kai, Joel E. Moore, Jason Alicea, and Gábor B. Halász. 2022. “Thermal Probes of Phonon-Coupled Kitaev Spin Liquids: From Accurate Extraction of Quantized Edge Transport to Anyon Interferometry.” Physical Review X 12 (1). https://doi.org/10.1103/physrevx.12.011034.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Rosa, Priscila F. S., Ashley Weiland, Shannon S. Fender, Brian L. Scott, Filip Ronning, Joe D. Thompson, Eric D. Bauer, and Sean M. Thomas. 2022. “Single Thermodynamic Transition at 2 K in Superconducting UTe2 Single Crystals.” Communications Materials 3 (1). https://doi.org/10.1038/s43246-022-00254-2.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Bac, S.-K., K. Koller, F. Lux, J. Wang, L. Riney, K. Borisiak, W. Powers, et al. 2022. “Topological Response of the Anomalous Hall Effect in MnBi2Te4 Due to Magnetic Canting.” Npj Quantum Materials 7 (1). https://doi.org/10.1038/s41535-022-00455-5.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Claudino, Daniel, Bo Peng, Nicholas P Bauman, Karol Kowalski, and Travis S Humble. 2021. “Improving the Accuracy and Efficiency of Quantum Connected Moments Expansions *.” Quantum Science and Technology 6 (3): 034012. https://doi.org/10.1088/2058-9565/ac0292.

20211.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Bauman, Nicholas P., and Karol Kowalski. 2022. “Coupled Cluster Downfolding Methods: The Effect of Double Commutator Terms on the Accuracy of Ground-State Energies.” The Journal of Chemical Physics 156 (9): 094106. https://doi.org/10.1063/5.0076260.

20221.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Kowalski, Karol. 2021. “Dimensionality Reduction of the Many-Body Problem Using Coupled-Cluster Subsystem Flow Equations: Classical and Quantum Computing Perspective.” Physical Review A 104 (3). https://doi.org/10.1103/physreva.104.032804.

20211.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Bylaska, Eric J., Duo Song, Nicholas P. Bauman, Karol Kowalski, Daniel Claudino, and Travis S. Humble. 2021. “Quantum Solvers for Plane-Wave Hamiltonians: Abridging Virtual Spaces Through the Optimization of Pairwise Correlations.” Frontiers in Chemistry 9 (March). https://doi.org/10.3389/fchem.2021.603019.

20211.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Bauman, Nicholas P., and Karol Kowalski. 2022. “Coupled Cluster Downfolding Theory: Towards Universal Many-Body Algorithms for Dimensionality Reduction of Composite Quantum Systems in Chemistry and Materials Science.” Materials Theory 6 (1). https://doi.org/10.1186/s41313-022-00046-8.

20221.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Selvarajan, Raja, Manas Sajjan, and Sabre Kais. 2022. “Variational Quantum Circuits to Prepare Low Energy Symmetry States.” Symmetry 14 (3): 457. https://doi.org/10.3390/sym14030457.

20221.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Li, Ang, Bo Fang, Christopher Granade, Guen Prawiroatmodjo, Bettina Heim, Martin Roetteler, and Sriram Krishnamoorthy. 2021. “SV-Sim.” Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, November. https://doi.org/10.1145/3458817.3476169.

20211.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Carbone, Alessandro, Davide Emilio Galli, Mario Motta, and Barbara Jones. 2022. “Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers.” Symmetry 14 (3): 624. https://doi.org/10.3390/sym14030624.

20221.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard

Copenhaver, Justin, and Jukka I. Väyrynen. 2022. “Edge Spin Transport in the Disordered Two-Dimensional Topological Insulator WTe2.” Physical Review B 105 (11). https://doi.org/10.1103/physrevb.105.115402.

20221.1.1 Topological Electronic Materials

Zhang, Jie, Yun-Yi Pai, Jason Lapano, Alessandro R. Mazza, Ho Nyung Lee, Rob G. Moore, Benjamin J. Lawrie, et al. 2021. “Design and Realization of Ohmic and Schottky Interfaces for Oxide Electronics.” Small Science 2 (2): 2100087. https://doi.org/10.1002/smsc.202100087.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Lapano, Jason, Yun-Yi Pai, Alessandro R. Mazza, Jie Zhang, Tamara Isaacs-Smith, Patrick Gemperline, Lizhi Zhang, et al. 2021. “Self-Regulated Growth of Candidate Topological Superconducting Parkerite by Molecular Beam Epitaxy.” APL Materials 9 (10): 101110. https://doi.org/10.1063/5.0064746.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Miao, H., Y. L. Wang, J.-X. Yin, J. Zhang, S. Zhang, M. Z. Hasan, R. Yang, et al. 2021. “Hund’s Superconductor Li(Fe,Co)As.” Physical Review B 103 (5). https://doi.org/10.1103/physrevb.103.054503.

20211.1.1.02 Controlling and Interacting with Anyons

Thomas, S. M., C. Stevens, F. B. Santos, S. S. Fender, E. D. Bauer, F. Ronning, J. D. Thompson, A. Huxley, and P. F. S. Rosa. 2021. “Spatially Inhomogeneous Superconductivity in UTe2.” Physical Review B 104 (22). https://doi.org/10.1103/physrevb.104.224501.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Avers, K. E., P. A. Maksimov, P. F. S. Rosa, S. M. Thomas, J. D. Thompson, W. P. Halperin, R. Movshovich, and A. L. Chernyshev. 2021. “Fingerprinting Triangular-Lattice Antiferromagnet by Excitation Gaps.” Physical Review B 103 (18). https://doi.org/10.1103/physrevb.103.l180406.

20211.1.1.02 Controlling and Interacting with Anyons

Yao, Xiong, Matthew Brahlek, Hee Taek Yi, Deepti Jain, Alessandro R. Mazza, Myung-Geun Han, and Seongshik Oh. 2021. “Hybrid Symmetry Epitaxy of the Superconducting Fe(Te,Se) Film on a Topological Insulator.” Nano Letters 21 (15): 6518–24. https://doi.org/10.1021/acs.nanolett.1c01703.

20211.1.1 Topological Electronic Materials

Zhang, Shang-Shun, Gábor B. Halász, Wei Zhu, and Cristian D. Batista. 2021. “Variational Study of the Kitaev-Heisenberg-Gamma Model.” Physical Review B 104 (1). https://doi.org/10.1103/physrevb.104.014411.

20211.1.2 Quantum Spin Systems

Liu, Chunxiao, Gábor B. Halász, and Leon Balents. 2021. “Symmetric U(1) and Z2 Spin Liquids on the Pyrochlore Lattice.” Physical Review B 104 (5). https://doi.org/10.1103/physrevb.104.054401.

20211.1.2 Quantum Spin Systems

Lapano, Jason, Ondrej Dyck, Andrew R. Lupini, Wonhee Ko, Haoxiang Li, Hu Miao, Ho Nyung Lee, et al. 2021. “Van Der Waals Epitaxy Growth of Bi2Se3 on a Freestanding Monolayer Graphene Membrane: Implications for Layered Materials and Heterostructures.” ACS Applied Nano Materials 4 (8): 7607–13. https://doi.org/10.1021/acsanm.1c01170.

20211.1.1 Topological Electronic Materials

Scheie, A., Pontus Laurell, A. M. Samarakoon, B. Lake, S. E. Nagler, G. E. Granroth, S. Okamoto, G. Alvarez, and D. A. Tennant. 2021. “Witnessing Entanglement in Quantum Magnets Using Neutron Scattering.” Physical Review B 103 (22). https://doi.org/10.1103/physrevb.103.224434.

20211.1.2 Quantum Spin Systems

Chirolli, Luca, and Joel E. Moore. 2021. “Enhanced Coherence in Superconducting Circuits via Band Engineering.” Physical Review Letters 126 (18). https://doi.org/10.1103/physrevlett.126.187701.

20211.1.1 Topological Electronic Materials

Wang, Derek S., Tomáš Neuman, and Prineha Narang. 2021. “Spin Emitters beyond the Point Dipole Approximation in Nanomagnonic Cavities.” The Journal of Physical Chemistry C 125 (11): 6222–28. https://doi.org/10.1021/acs.jpcc.0c11536.

20211.1.3 Quantum Probes

Lesser, Omri, Andrew Saydjari, Marie Wesson, Amir Yacoby, and Yuval Oreg. 2021. “Phase-Induced Topological Superconductivity in a Planar Heterostructure.” Proceedings of the National Academy of Sciences 118 (27). https://doi.org/10.1073/pnas.2107377118.

20211.1.3 Quantum Probes

Li, Haoxiang, T. T. Zhang, A. Said, G. Fabbris, D. G. Mazzone, J. Q. Yan, D. Mandrus, et al. 2021. “Giant Phonon Anomalies in the Proximate Kitaev Quantum Spin Liquid α-RuCl3.” Nature Communications 12 (1). https://doi.org/10.1038/s41467-021-23826-1.

20211.1.2 Quantum Spin Systems

Väyrynen, Jukka I., Dmitry I. Pikulin, and Roman M. Lutchyn. 2021. “Majorana Signatures in Charge Transport through a Topological Superconducting Double-Island System.” Physical Review B 103 (20). https://doi.org/10.1103/physrevb.103.205427.

20211.1.1 Topological Electronic Materials

Yin, Jia-Xin, Shuheng H. Pan, and M. Zahid Hasan. 2021. “Probing Topological Quantum Matter with Scanning Tunnelling Microscopy.” Nature Reviews Physics 3 (4): 249–63. https://doi.org/10.1038/s42254-021-00293-7.

20211.1.1 Topological Electronic Materials

Sbierski, Björn, Elizabeth J. Dresselhaus, Joel E. Moore, and Ilya A. Gruzberg. 2021. “Criticality of Two-Dimensional Disordered Dirac Fermions in the Unitary Class and Universality of the Integer Quantum Hall Transition.” Physical Review Letters 126 (7). https://doi.org/10.1103/physrevlett.126.076801.

20211.1.1 Topological Electronic Materials

Kao, Wen-Han, Johannes Knolle, Gábor B. Halász, Roderich Moessner, and Natalia B. Perkins. 2021. “Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid.” Physical Review X 11 (1). https://doi.org/10.1103/physrevx.11.011034.

20211.1.2 Quantum Spin Systems

Tian, Jifa, Cüneyt Şahin, Ireneusz Miotkowski, Michael E. Flatté, and Yong P. Chen. 2021. “Opposite Current-Induced Spin Polarizations in Bulk-Metallic Bi2Se3 and Bulk-Insulating Bi2Te2Se Topological Insulator Thin Flakes.” Physical Review B 103 (3). https://doi.org/10.1103/physrevb.103.035412.

20211.1.1 Topological Electronic Materials

Balz, C., L. Janssen, P. Lampen-Kelley, A. Banerjee, Y. H. Liu, J.-Q. Yan, D. G. Mandrus, M. Vojta, and S. E. Nagler. 2021. “Field-Induced Intermediate Ordered Phase and Anisotropic Interlayer Interactions in α−RuCl3.” Physical Review B 103 (17). https://doi.org/10.1103/physrevb.103.174417.

20211.1.2 Quantum Spin Systems

Schönemann, Rico, Shusaku Imajo, Franziska Weickert, Jiaqiang Yan, David G. Mandrus, Yasumasa Takano, Eric L. Brosha, et al. 2020. “Thermal and Magnetoelastic Properties of α−RuCl3 in the Field-Induced Low-Temperature States.” Physical Review B 102 (21). https://doi.org/10.1103/physrevb.102.214432.

20201.1.2 Quantum Spin Systems

Scheie, A., N. E. Sherman, M. Dupont, S. E. Nagler, M. B. Stone, G. E. Granroth, J. E. Moore, and D. A. Tennant. 2021. “Detection of Kardar–Parisi–Zhang Hydrodynamics in a Quantum Heisenberg Spin-1/2 Chain.” Nature Physics 17 (6): 726–30. https://doi.org/10.1038/s41567-021-01191-6.

20211.1.2 Quantum Spin Systems

Klocke, Kai, David Aasen, Roger S. K. Mong, Eugene A. Demler, and Jason Alicea. 2021. “Time-Domain Anyon Interferometry in Kitaev Honeycomb Spin Liquids and Beyond.” Physical Review Letters 126 (17). https://doi.org/10.1103/physrevlett.126.177204.

20211.1.2 Quantum Spin Systems

Khindanov, Aleksei, Jason Alicea, Patrick Lee, William S. Cole, and Andrey E. Antipov. 2021. “Topological Superconductivity in Nanowires Proximate to a Diffusive Superconductor–Magnetic-Insulator Bilayer.” Physical Review B 103 (13). https://doi.org/10.1103/physrevb.103.134506.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Hamann, Danielle M., Sven P. Rudin, Tomoya Asaba, Filip Ronning, Dmitri Leo M. Cordova, Ping Lu, and David C. Johnson. 2021. “Predicting and Synthesizing Interface Stabilized 2D Layers.” Chemistry of Materials 33 (13): 5076–84. https://doi.org/10.1021/acs.chemmater.1c01064.

20211.1.1.01 Topological materials prediction, synthesis, materials development