Publications
Publication | ||
---|---|---|
Samarakoon, Anjana M., André Sokolowski, Bastian Klemke, Ralf Feyerherm, Michael Meissner, R. A. Borzi, Feng Ye, et al. 2022. “Structural Magnetic Glassiness in the Spin Ice Dy2Ti2O7.” Physical Review Research 4 (3). https://doi.org/10.1103/physrevresearch.4.033159. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Scheie, A., P. Laurell, B. Lake, S. E. Nagler, M. B. Stone, J-S Caux, and D. A. Tennant. 2022. “Quantum Wake Dynamics in Heisenberg Antiferromagnetic Chains.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-33571-8. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Laurell, Pontus, Allen Scheie, D. Alan Tennant, Satoshi Okamoto, Gonzalo Alvarez, and Elbio Dagotto. 2022. “Magnetic Excitations, Nonclassicality, and Quantum Wake Spin Dynamics in the Hubbard Chain.” Physical Review B 106 (8). https://doi.org/10.1103/physrevb.106.085110. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Zhang, Qiang, Yuanpeng Zhang, Masaaki Matsuda, Vasile Ovidiu Garlea, Jiaqiang Yan, Michael A. McGuire, D. Alan Tennant, and Satoshi Okamoto. 2022. “Hidden Local Symmetry Breaking in a Kagome-Lattice Magnetic Weyl Semimetal.” Journal of the American Chemical Society 144 (31): 14339–50. https://doi.org/10.1021/jacs.2c05665. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Wang, Qing Hua, Amilcar Bedoya-Pinto, Mark Blei, Avalon H. Dismukes, Assaf Hamo, Sarah Jenkins, Maciej Koperski, et al. 2022. “The Magnetic Genome of Two-Dimensional van Der Waals Materials.” ACS Nano 16 (5): 6960–7079. https://doi.org/10.1021/acsnano.1c09150. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Biswas, Somnath, Ioannis Petrides, Robert J. Kirby, Catrina Oberg, Sebastian Klemenz, Caroline Weinberg, Austin Ferrenti, Prineha Narang, Leslie M. Schoop, and Gregory D. Scholes. 2022. “Photoinduced Band Renormalization Effects in the Topological Nodal-Line Semimetal ZrSiS.” Physical Review B 106 (13). https://doi.org/10.1103/physrevb.106.134303. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Klein, J., T. Pham, J. D. Thomsen, J. B. Curtis, T. Denneulin, M. Lorke, M. Florian, et al. 2022. “Control of Structure and Spin Texture in the van Der Waals Layered Magnet CrSBr.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-32737-8. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Slagle, Kevin, Yue Liu, David Aasen, Hannes Pichler, Roger S. K. Mong, Xie Chen, Manuel Endres, and Jason Alicea. 2022. “Quantum Spin Liquids Bootstrapped from Ising Criticality in Rydberg Arrays.” Physical Review B 106 (11). https://doi.org/10.1103/physrevb.106.115122. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Weiland, A, S M Thomas, and P F S Rosa. 2022. “Investigating the Limits of Superconductivity in UTe2.” Journal of Physics: Materials 5 (4): 044001. https://doi.org/10.1088/2515-7639/ac8ba9. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Sbierski, Björn, Max Geier, An-Ping Li, Matthew Brahlek, Robert G. Moore, and Joel E. Moore. 2022. “Identifying Majorana Vortex Modes via Nonlocal Transport.” Physical Review B 106 (3). https://doi.org/10.1103/physrevb.106.035413. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Bøttcher, C. G. L., S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, U. Vool, S. D. Bartlett, and A. Yacoby. 2022. “Parametric Longitudinal Coupling between a High-Impedance Superconducting Resonator and a Semiconductor Quantum Dot Singlet-Triplet Spin Qubit.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-32236-w. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
McGuire, Michael A., Yun-Yi Pai, Matthew Brahlek, Satoshi Okamoto, and R. G. Moore. 2022. “Electronic and Topological Properties of the van Der Waals Layered Superconductor PtTe.” Physical Review B 105 (18). https://doi.org/10.1103/physrevb.105.184514. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Liu, Yue, Kevin Slagle, Kenneth S. Burch, and Jason Alicea. 2022. “Dynamical Anyon Generation in Kitaev Honeycomb Non-Abelian Spin Liquids.” Physical Review Letters 129 (3). https://doi.org/10.1103/physrevlett.129.037201. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Mishra, S., Y. Liu, E. D. Bauer, F. Ronning, and S. M. Thomas. 2022. “Anisotropic Magnetotransport Properties of the Heavy-Fermion Superconductor CeRh2As2.” Physical Review B 106 (14). https://doi.org/10.1103/physrevb.106.l140502. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Curtis, Jonathan B., Nicholas R. Poniatowski, Amir Yacoby, and Prineha Narang. 2022. “Proximity-Induced Collective Modes in an Unconventional Superconductor Heterostructure.” Physical Review B 106 (6). https://doi.org/10.1103/physrevb.106.064508. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Wang, Yaxian, Georgios Varnavides, Ravishankar Sundararaman, Polina Anikeeva, Johannes Gooth, Claudia Felser, and Prineha Narang. 2022. “Generalized Design Principles for Hydrodynamic Electron Transport in Anisotropic Metals.” Physical Review Materials 6 (8). https://doi.org/10.1103/physrevmaterials.6.083802. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Qiu, Ziwei, Assaf Hamo, Uri Vool, Tony X. Zhou, and Amir Yacoby. 2022. “Nanoscale Electric Field Imaging with an Ambient Scanning Quantum Sensor Microscope.” Npj Quantum Information 8 (1). https://doi.org/10.1038/s41534-022-00622-3. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Park, Sohee, Young-Kyun Kwon, Mina Yoon, and Changwon Park. 2022. “Role of Sr Doping and External Strain on Relieving Bottleneck of Oxygen Diffusion in La2−xSrxCuO4−δ.” Scientific Reports 12 (1). https://doi.org/10.1038/s41598-022-17376-9. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Llacsahuanga Allcca, Andres E., Xing-Chen Pan, Ireneusz Miotkowski, Katsumi Tanigaki, and Yong P. Chen. 2022. “Gate-Tunable Anomalous Hall Effect in Stacked van Der Waals Ferromagnetic Insulator–Topological Insulator Heterostructures.” Nano Letters 22 (20): 8130–36. https://doi.org/10.1021/acs.nanolett.2c02571. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Girod, Clément, Callum R. Stevens, Andrew Huxley, Eric D. Bauer, Frederico B. Santos, Joe D. Thompson, Rafael M. Fernandes, et al. 2022. “Thermodynamic and Electrical Transport Properties of UTe2 under Uniaxial Stress.” Physical Review B 106 (12). https://doi.org/10.1103/physrevb.106.l121101. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Klocke, Kai, and Michael Buchhold. 2022. “Topological Order and Entanglement Dynamics in the Measurement-Only XZZX Quantum Code.” Physical Review B 106 (10). https://doi.org/10.1103/physrevb.106.104307. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Lapano, Jason, Yun-Yi Pai, Alessandro R. Mazza, Jie Zhang, Tamara Isaacs-Smith, Patrick Gemperline, Lizhi Zhang, et al. 2021. “Self-Regulated Growth of Candidate Topological Superconducting Parkerite by Molecular Beam Epitaxy.” APL Materials 9 (10): 101110. https://doi.org/10.1063/5.0064746. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Moore, Robert G., Tyler Smith, Xiong Yao, Yun-Yi Pai, Michael Chilcote, Hu Miao, Satoshi Okamoto, Seongshik Oh, and Matthew Brahlek. 2022. “Monolayer Superconductivity and Tunable Topological Electronic Structure at the Fe(Te,Se)/Bi2Te3 Interface.” arXiv. https://doi.org/10.48550/ARXIV.2209.06646. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Khalid, Bilal, Shree Hari Sureshbabu, Arnab Banerjee, and Sabre Kais. 2022. “Finite-Size Scaling on a Digital Quantum Simulator Using Quantum Restricted Boltzmann Machine.” Frontiers in Physics 10 (May). https://doi.org/10.3389/fphy.2022.915863. | 2022 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Mishra, Sanu, Yu Liu, Eric D. Bauer, Filip Ronning, and Sean. M. Thomas. 2022. “Anisotropic Magnetotransport Properties of the Heavy-Fermion Superconductor CeRh$_2$As$_2$.” ArXiv. https://doi.org/10.48550/ARXIV.2207.14773. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Dasgupta, Samudra, and Travis S. Humble. 2022. “Characterizing the Reproducibility of Noisy Quantum Circuits.” Entropy 24 (2): 244. https://doi.org/10.3390/e24020244. | 2022 | 1.6 QSC Management |
Li, Guangjie, Yuval Oreg, and Jukka I. Väyrynen. 2022. “Multichannel Topological Kondo Effect.” arXiv. https://doi.org/10.48550/ARXIV.2207.10105. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Sajjan, Manas, Junxu Li, Raja Selvarajan, Shree Hari Sureshbabu, Sumit Suresh Kale, Rishabh Gupta, Vinit Singh, and Sabre Kais. 2022. “Quantum Machine Learning for Chemistry and Physics.” Chemical Society Reviews 51 (15): 6475–6573. https://doi.org/10.1039/d2cs00203e. | 2022 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Li, Shaozhi, and Satoshi Okamoto. 2022. “Thermal Hall Effect in the Kitaev-Heisenberg System with Spin-Phonon Coupling.” Physical Review B 106 (2). https://doi.org/10.1103/physrevb.106.024413. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Fang, Bo, M. Yusuf Özkaya, Ang Li, Ümit V. Çatalyürek, and Sriram Krishnamoorthy. 2022. “Efficient Hierarchical State Vector Simulation of Quantum Circuits via Acyclic Graph Partitioning.” arXiv. https://doi.org/10.48550/ARXIV.2205.06973. | 2022 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Li, Ang, Bo Fang, Christopher Granade, Guen Prawiroatmodjo, Bettina Heim, Martin Roetteler, and Sriram Krishnamoorthy. 2021. “SV-Sim.” Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, November. https://doi.org/10.1145/3458817.3476169. | 2021 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Jha, Akshat A., Eliana L. Stoyanoff, Guga Khundzakishvili, Paul Kairys, Hayato Ushijima-Mwesigwa, and Arnab Banerjee. 2021. “Digital Annealing Route to Complex Magnetic Phase Discovery.” 2021 International Conference on Rebooting Computing (ICRC), November. https://doi.org/10.1109/icrc53822.2021.00027. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Rajagopal Iyer, Vasudevan, Scott T. Retterer, Jason Fowlkes, Stephen Jesse, Alexander A. Puretzky, Jordan A. Hachtel, Philip D. Rack, and Benjamin J. Lawrie. 2021. “In Situ Electron-Beam Processing and Cathodoluminescence Microscopy for Quantum Nanophotonics.” Edited by Andrei V. Kabashin, Jan J. Dubowski, David B. Geohegan, and Maria Farsari. Synthesis and Photonics of Nanoscale Materials XVIII, March. https://doi.org/10.1117/12.2578528. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Slagle, Kevin. 2021. “Testing Quantum Mechanics Using Noisy Quantum Computers.” arXiv. https://doi.org/10.48550/ARXIV.2108.02201. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Slagle, Kevin. 2021. “Fast Tensor Disentangling Algorithm.” SciPost Physics 11 (3). https://doi.org/10.21468/scipostphys.11.3.056. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Zhang, Shang-Shun, Gábor B. Halász, and Cristian D. Batista. 2021. “Theory of the Kitaev Model in a [111] Magnetic Field.” ArXiv. https://doi.org/10.48550/ARXIV.2104.02892. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Wang, Samson, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Lukasz Cincio, and Patrick J. Coles. 2021. “Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms?” arXiv. https://doi.org/10.48550/ARXIV.2109.01051. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Thomson, Alex, Ina Sorensen, Stevan Nadj-Perge, and Jason Alicea. 2021. “Gate-Defined Wires in Twisted Bilayer Graphene: from Electrical Detection of Inter-Valley Coherence to Internally Engineered Majorana Modes.” ArXiv. https://doi.org/10.48550/ARXIV.2105.02891. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Slagle, Kevin, David Aasen, Hannes Pichler, Roger S. K. Mong, Paul Fendley, Xie Chen, Manuel Endres, and Jason Alicea. 2021. “Microscopic Characterization of Ising Conformal Field Theory in Rydberg Chains.” Physical Review B 104 (23). https://doi.org/10.1103/physrevb.104.235109. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Scheie, Allen, Pontus Laurell, Paul A. McClarty, Garrett E. Granroth, Matt B. Stone, Roderich Moessner, and Stephen E. Nagler. 2021. “Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium.” ArXiv. https://doi.org/10.48550/ARXIV.2107.11372. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Scheie, A. O., E. A. Ghioldi, J. Xing, J. A. M. Paddison, N. E. Sherman, M. Dupont, L. D. Sanjeewa, et al. 2021. “Witnessing Quantum Criticality and Entanglement in the Triangular Antiferromagnet KYbSe$_2$.” arXiv. https://doi.org/10.48550/ARXIV.2109.11527. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Samarakoon, Anjana M., Andre Sokolowski, Bastian Klemke, Ralf Feyerherm, Michael Meissner, R. A. Borzi, Feng Ye, et al. 2021. “Structural Magnetic Glassiness in Spin Ice Dy$_2$Ti$_2$O$_7$.” ArXiv. https://doi.org/10.48550/ARXIV.2107.12305. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Sajjan, Manas, Junxu Li, Raja Selvarajan, Shree Hari Sureshbabu, Sumit Suresh Kale, Rishabh Gupta, Vinit Singh, and Sabre Kais. 2021. “Quantum Machine Learning for Chemistry and Physics.” ArXiv. https://doi.org/10.48550/ARXIV.2111.00851. | 2021 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Rosa, P. F. S., A. Weiland, S. S. Fender, B. L. Scott, F. Ronning, J. D. Thompson, E. D. Bauer, and S. M. Thomas. 2021. “Single-Component Superconducting State in UTe2 at 2 K.” ArXiv. https://doi.org/10.48550/ARXIV.2110.06200. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Myerson-Jain, Nayan E., Stephen Yan, David Weld, and Cenke Xu. 2021. “Construction of Fractal Order and Phase Transition with Rydberg Atoms.” ArXiv. https://doi.org/10.48550/ARXIV.2108.07765. | 2021 | 1.2.2.03 Kitaev Chain Quantum Simulator |
Mu, Sai, Kiranmayi D. Dixit, Xiaoping Wang, Douglas L. Abernathy, Huibo Cao, Stephen E. Nagler, Jiaqiang Yan, et al. 2022. “Role of the Third Dimension in Searching for Majorana Fermions in α−RuCl3 via Phonons.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013067. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Liu, Yue, Kevin Slagle, Kenneth S. Burch, and Jason Alicea. 2021. “Dynamical Anyon Generation in Kitaev Honeycomb Non-Abelian Spin Liquids.” ArXiv. https://doi.org/10.48550/ARXIV.2111.09325. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Klocke, Kai, Joel E. Moore, Jason Alicea, and Gábor B. Halász. 2021. “Thermal Anyon Interferometry in Phonon-Coupled Kitaev Spin Liquids.” ArXiv. https://doi.org/10.48550/ARXIV.2105.05869. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Caro, Matthias C., Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, and Patrick J. Coles. 2021. “Generalization in Quantum Machine Learning from Few Training Data.” ArXiv. https://doi.org/10.48550/ARXIV.2111.05292. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Bultrini, Daniel, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. 2021. “Unifying and Benchmarking State-of-the-Art Quantum Error Mitigation Techniques.” arXiv. https://doi.org/10.48550/ARXIV.2107.13470. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Holmes, Zoe, Gopikrishnan Muraleedharan, Rolando D. Somma, Yigit Subasi, and Burak Şahinoğlu. 2022. “Quantum Algorithms from Fluctuation Theorems: Thermal-State Preparation.” ArXiv. https://doi.org/10.48550/ARXIV.2203.08882. | 2022 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Shimasaki, Toshihiko, Max Prichard, H. Esat Kondakci, Jared Pagett, Yifei Bai, Peter Dotti, Alec Cao, Tsung-Cheng Lu, Tarun Grover, and David M. Weld. 2022. “Anomalous Localization and Multifractality in a Kicked Quasicrystal.” arXiv. https://doi.org/10.48550/ARXIV.2203.09442. | 2022 | 1.2.2.03 Kitaev Chain Quantum Simulator |
Khalid, Bilal, Shree Hari Sureshbabu, Arnab Banerjee, and Sabre Kais. 2022. “Finite-Size Scaling on a Digital Quantum Simulator Using Quantum Restricted Boltzmann Machine.” arXiv. https://doi.org/10.48550/ARXIV.2202.00112. | 2022 | 1.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard |
Martin, Joshua D., A. Roggero, Huaiyu Duan, J. Carlson, and V. Cirigliano. 2021. “Classical and Quantum Evolution in a Simple Coherent Neutrino Problem.” ArXiv. https://doi.org/10.48550/ARXIV.2112.12686. | 2021 | 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Poniatowski, Nicholas R., Jonathan B. Curtis, Charlotte G. L. Bøttcher, Victor M. Galitski, Amir Yacoby, Prineha Narang, and Eugene Demler. 2021. “Surface Cooper Pair Spin Waves in Triplet Superconductors.” arXiv. https://doi.org/10.48550/ARXIV.2112.12146. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Curtis, Jonathan B., Nicholas R. Poniatowski, Amir Yacoby, and Prineha Narang. 2022. “Proximity-Induced Collective Modes in an Unconventional Superconductor Heterostructure.” ArXiv. https://doi.org/10.48550/ARXIV.2201.04635. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Czajka, Peter, Tong Gao, Max Hirschberger, Paula Lampen-Kelley, Arnab Banerjee, Nicholas Quirk, David G. Mandrus, Stephen E. Nagler, and N. P. Ong. 2022. “The Planar Thermal Hall Conductivity in the Kitaev Magnet α-RuCl3.” arXiv. https://doi.org/10.48550/ARXIV.2201.07873. | 2022 | 1.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard |
Li, Haoxiang, A. Said, J. Q. Yan, D. M. Mandrus, H. N. Lee, S. Okamoto, Gábor B. Halász, and H. Miao. 2021. “Divergence of Majorana-Phonon Scattering in Kitaev Quantum Spin Liquid.” arXiv. https://doi.org/10.48550/ARXIV.2112.02015. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Volkoff, T. J., and Yiğit Subaşı. 2022. “Ancilla-Free Continuous-Variable SWAP Test.” ArXiv. https://doi.org/10.48550/ARXIV.2202.09923. | 2022 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Lefrançois, É., G. Grissonnanche, J. Baglo, P. Lampen-Kelley, J. Yan, C. Balz, D. Mandrus, et al. 2021. “Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate $α$-RuCl$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2111.05493. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Wang, Derek S., Michael Haas, and Prineha Narang. 2021. “Quantum Interfaces to the Nanoscale.” ACS Nano 15 (5): 7879–88. https://doi.org/10.1021/acsnano.1c01255. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Tian, Jifa, Luis A Jauregui, C D Wilen, Albert F Rigosi, David B Newell, R McDermott, and Yong P Chen. 2021. “A Josephson Junction with H-BN Tunnel Barrier: Observation of Low Critical Current Noise.” Journal of Physics: Condensed Matter 33 (49): 495301. https://doi.org/10.1088/1361-648x/ac268f. | 2021 | 1.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel |
Selvarajan, Raja, Vivek Dixit, Xingshan Cui, Travis S. Humble, and Sabre Kais. 2021. “Prime Factorization Using Quantum Variational Imaginary Time Evolution.” Scientific Reports 11 (1). https://doi.org/10.1038/s41598-021-00339-x. | 2021 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Sajjan, Manas, Shree Hari Sureshbabu, and Sabre Kais. 2021. “Quantum Machine-Learning for Eigenstate Filtration in Two-Dimensional Materials.” Journal of the American Chemical Society 143 (44): 18426–45. https://doi.org/10.1021/jacs.1c06246. | 2021 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Mazza, Alessandro R., Xingyao Gao, Daniel J. Rossi, Brianna L. Musico, Tyler W. Valentine, Zachary Kennedy, Jie Zhang, et al. 2022. “Searching for Superconductivity in High Entropy Oxide Ruddlesden–Popper Cuprate Films.” Journal of Vacuum Science & Technology A 40 (1): 013404. https://doi.org/10.1116/6.0001441. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Multer, Daniel, Jia-Xin Yin, Songtian S. Zhang, Hao Zheng, Tay-Rong Chang, Guang Bian, Raman Sankar, and M. Zahid Hasan. 2021. “Robust Topological State against Magnetic Impurities Observed in the Superconductor PbTaSe2.” Physical Review B 104 (7). https://doi.org/10.1103/physrevb.104.075145. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Kayyalha, Morteza, Leonid P. Rokhinson, and Yong P. Chen. 2021. “Electrical and Superconducting Transport in Topological Insulator Nanoribbons.” Frontiers of Nanoscience, 241–64. https://doi.org/10.1016/b978-0-12-822083-2.00004-6. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Gao, Xingyu, Boyang Jiang, Andres E. Llacsahuanga Allcca, Kunhong Shen, Mohammad A. Sadi, Abhishek B. Solanki, Peng Ju, et al. 2021. “High-Contrast Plasmonic-Enhanced Shallow Spin Defects in Hexagonal Boron Nitride for Quantum Sensing.” Nano Letters 21 (18): 7708–14. https://doi.org/10.1021/acs.nanolett.1c02495. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Varnavides, Georgios, Yaxian Wang, Philip J. W. Moll, Polina Anikeeva, and Prineha Narang. 2022. “Mesoscopic Finite-Size Effects of Unconventional Electron Transport in PdCoO2.” Physical Review Materials 6 (4). https://doi.org/10.1103/physrevmaterials.6.045002. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Wang, Yiping, Ioannis Petrides, Grant McNamara, Md Mofazzel Hosen, Shiming Lei, Yueh-Chun Wu, James L. Hart, et al. 2022. “Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3.” Nature 606 (7916): 896–901. https://doi.org/10.1038/s41586-022-04746-6. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Lefrançois, É., G. Grissonnanche, J. Baglo, P. Lampen-Kelley, J.-Q. Yan, C. Balz, D. Mandrus, et al. 2022. “Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate α−RuCl3.” Physical Review X 12 (2). https://doi.org/10.1103/physrevx.12.021025. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Belopolski, Ilya, Guoqing Chang, Tyler A. Cochran, Zi-Jia Cheng, Xian P. Yang, Cole Hugelmeyer, Kaustuv Manna, et al. 2022. “Observation of a Linked-Loop Quantum State in a Topological Magnet.” Nature 604 (7907): 647–52. https://doi.org/10.1038/s41586-022-04512-8. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Mazza, Alessandro R., Jason Lapano, Harry M. MeyerIII, Christopher T. Nelson, Tyler Smith, Yun‐Yi Pai, Kyle Noordhoek, et al. 2022. “Surface‐Driven Evolution of the Anomalous Hall Effect in Magnetic Topological Insulator MnBi 2 Te 4 Thin Films.” Advanced Functional Materials 32 (28): 2202234. https://doi.org/10.1002/adfm.202202234. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Park, Changwon, and Mina Yoon. 2022. “Topography Inversion in Scanning Tunneling Microscopy of Single-Atom-Thick Materials from Penetrating Substrate States.” Scientific Reports 12 (1). https://doi.org/10.1038/s41598-022-10870-0. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Curtis, Jonathan B., Ioannis Petrides, and Prineha Narang. 2022. “Finite-Momentum Instability of Dynamical Axion Insulator.” arXiv. https://doi.org/10.48550/ARXIV.2206.04711. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Biswas, Somnath, Ioannis Petrides, Robert J. Kirby, Catrina Oberg, Sebastian Klemenz, Caroline Weinberg, Austin Ferrenti, Prineha Narang, Leslie Schoop, and Gregory D. Scholes. 2022. “Photoinduced Band Renormalization Effects in ZrSiS Topological Nodal-Line Semimetal.” arXiv. https://doi.org/10.48550/ARXIV.2206.04654. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Welakuh, Davis M., and Prineha Narang. 2021. “Transition from Lorentz to Fano Spectral Line Shapes in Non-Relativistic Quantum Electrodynamics.” arXiv. https://doi.org/10.48550/ARXIV.2112.05114. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Welakuh, Davis M., and Prineha Narang. 2022. “Nonlinear Optical Processes in Centrosymmetric Systems by Strong-Coupling-Induced Symmetry Breaking.” arXiv. https://doi.org/10.48550/ARXIV.2202.11117. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Welakuh, Davis M., and Prineha Narang. 2022. “Tunable Nonlinearity and Efficient Harmonic Generation from a Strongly Coupled Light-Matter System.” arXiv. https://doi.org/10.48550/ARXIV.2203.00691. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Idzuchi, H., M. Kimata, S. Okamoto, P. Laurell, N. Mohanta, M. Cothrine, S. E. Nagler, D. Mandrus, A. Banerjee, and Y. P. Chen. 2022. “Spin Sensitive Transport in a Spin Liquid Material: Revealing a Robustness of Spin Anisotropy.” arXiv. https://doi.org/10.48550/ARXIV.2204.03158. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons, 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Laurell, Pontus, Allen Scheie, D. Alan Tennant, Satoshi Okamoto, Gonzalo Alvarez, and Elbio Dagotto. 2022. “Magnetic Excitations, Non-Classicality and Quantum Wake Spin Dynamics in the Hubbard Chain.” ArXiv. https://doi.org/10.48550/ARXIV.2203.06332. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Chirolli, Luca, Norman Y. Yao, and Joel E. Moore. 2022. “SWAP Gate between a Majorana Qubit and a Parity-Protected Superconducting Qubit.” arXiv. https://doi.org/10.48550/ARXIV.2205.01410. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Papaj, Michał, and Joel E. Moore. 2022. “Current-Enabled Optical Conductivity of Superconductors.” arXiv. https://doi.org/10.48550/ARXIV.2203.15801. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Guo, Yucheng, Mason Klemm, Ji Seop Oh, Yaofeng Xie, Bing-Hua Lei, Sergey Gorovikov, Tor Pedersen, et al. 2022. “Spectral Evidence for Unidirectional Charge Density Wave in Detwinned BaNi$_2$As$_2$.” arXiv. https://doi.org/10.48550/ARXIV.2205.14339. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Wang, Yiping, Ioannis Petrides, Grant McNamara, Md Mofazzel Hosen, Shiming Lei, Yueh-Chun Wu, James L. Hart, et al. 2021. “Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3.” ArXiv. https://doi.org/10.48550/ARXIV.2112.02454. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Zhang, Qiang, Yuanpeng Zhang, Masaaki Matsuda, Vasile O Garlea, Jiaqiang Yan, Michael A. McGuire, D. Alan Tennant, and Satoshi Okamoto. 2022. “Hidden Local Symmetry Breaking in a Kagome-Lattice Magnetic Weyl Semimetal.” ArXiv. https://doi.org/10.48550/ARXIV.2202.08428. | 2022 | 1.1.1 Topological Electronic Materials, 1.1.1.01 Topological materials prediction, synthesis, materials development |
Scheie, Allen, Pontus Laurell, Bella Lake, Stephen E. Nagler, Matthew B. Stone, Jean-Sebastian Caux, and D. Alan Tennant. 2022. “Quantum Wake Dynamics in Heisenberg Antiferromagnetic Chains.” ArXiv. https://doi.org/10.48550/ARXIV.2201.03536. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Samarakoon, Anjana M., Pontus Laurell, Christian Balz, Arnab Banerjee, Paula Lampen-Kelley, David Mandrus, Stephen E. Nagler, Satoshi Okamoto, and D. Alan Tennant. 2022. “Extraction of the Interaction Parameters for $α-$RuCl$_3$ from Neutron Data Using Machine Learning.” ArXiv. https://doi.org/10.48550/ARXIV.2202.10715. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Slagle, Kevin, Yue Liu, David Aasen, Hannes Pichler, Roger S. K. Mong, Xie Chen, Manuel Endres, and Jason Alicea. 2022. “Quantum Spin Liquids Bootstrapped from Ising Criticality in Rydberg Arrays.” ArXiv. https://doi.org/10.48550/ARXIV.2204.00013. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
McGuire, Michael A., Yun-Yi Pai, Matthew Brahlek, Satoshi Okamoto, and R. G. Moore. 2022. “Electronic and Topological Properties of the Van Der Waals Layered Superconductor PtTe.” ArXiv. https://doi.org/10.48550/ARXIV.2203.06655. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Samarakoon, A. M., D. Alan Tennant, Feng Ye, Qiang Zhang, and S. A. Grigera. 2021. “Integration of Machine Learning with Neutron Scattering: Hamiltonian Tuning in Spin Ice with Pressure.” arXiv. https://doi.org/10.48550/ARXIV.2110.15817. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
McGuire, Michael A., Qiang Zhang, Hu Miao, Wei Luo, Mina Yoon, Yaohua Liu, Turgut Yilmaz, and Elio Vescovo. 2021. “Antiferromagnetic Order and Linear Magnetoresistance in Fe-Substituted Shandite Co3In2S2.” Chemistry of Materials 33 (24): 9741–49. https://doi.org/10.1021/acs.chemmater.1c03596. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Slagle, Kevin, David Aasen, Hannes Pichler, Roger S. K. Mong, Paul Fendley, Xie Chen, Manuel Endres, and Jason Alicea. 2021. “Microscopic Characterization of Ising Conformal Field Theory in Rydberg Chains.” ArXiv. https://doi.org/10.48550/ARXIV.2108.09309. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Rosa, P. F. S., A. Weiland, S. S. Fender, B. L. Scott, F. Ronning, J. D. Thompson, E. D. Bauer, and S. M. Thomas. 2021. “Single-Component Superconducting State in UTe2 at 2 K.” ArXiv. https://doi.org/10.48550/ARXIV.2110.06200. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Dupont, Maxime, and Joel E. Moore. 2021. “Quantum Criticality Using a Superconducting Quantum Processor.” ArXiv. https://doi.org/10.48550/ARXIV.2109.10909. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Sbierski, Björn, Max Geier, An-Ping Li, Matthew Brahlek, Robert G. Moore, and Joel E. Moore. 2021. “Identifying Majorana Vortex Modes via Non-Local Transport.” ArXiv. https://doi.org/10.48550/ARXIV.2107.11226. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Beckey, Jacob L., N. Gigena, Patrick J. Coles, and M. Cerezo. 2021. “Computable and Operationally Meaningful Multipartite Entanglement Measures.” Physical Review Letters 127 (14). https://doi.org/10.1103/physrevlett.127.140501. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Hall, Benjamin, Alessandro Roggero, Alessandro Baroni, and Joseph Carlson. 2021. “Simulation of Collective Neutrino Oscillations on a Quantum Computer.” Physical Review D 104 (6). https://doi.org/10.1103/physrevd.104.063009. | 2021 | 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Lowe, Angus, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. 2021. “Unified Approach to Data-Driven Quantum Error Mitigation.” Physical Review Research 3 (3). https://doi.org/10.1103/physrevresearch.3.033098. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Volkoff, T. J., and Michael J. Martin. 2022. “Asymptotic Optimality of Twist-Untwist Protocols for Heisenberg Scaling in Atom-Based Sensing.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013236. | 2022 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Samarakoon, Anjana M., S. A. Grigera, D. Alan Tennant, Alexander Kirste, Bastian Klemke, Peter Strehlow, Michael Meissner, et al. 2022. “Anomalous Magnetic Noise in an Imperfectly Flat Landscape in the Topological Magnet Dy 2 Ti 2 O 7.” Proceedings of the National Academy of Sciences 119 (5). https://doi.org/10.1073/pnas.2117453119. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Beckey, Jacob L., M. Cerezo, Akira Sone, and Patrick J. Coles. 2022. “Variational Quantum Algorithm for Estimating the Quantum Fisher Information.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013083. | 2022 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Mazza, Alessandro R., Xingyao Gao, Daniel J. Rossi, Brianna L. Musico, Tyler W. Valentine, Zachary Kennedy, Jie Zhang, et al. 2022. “Searching for Superconductivity in High Entropy Oxide Ruddlesden–Popper Cuprate Films.” Journal of Vacuum Science & Technology A 40 (1): 013404. https://doi.org/10.1116/6.0001441. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Samarakoon, Anjana M, and D Alan Tennant. 2021. “Machine Learning for Magnetic Phase Diagrams and Inverse Scattering Problems.” Journal of Physics: Condensed Matter 34 (4): 044002. https://doi.org/10.1088/1361-648x/abe818. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Neupert, Titus, M. Michael Denner, Jia-Xin Yin, Ronny Thomale, and M. Zahid Hasan. 2021. “Charge Order and Superconductivity in Kagome Materials.” Nature Physics 18 (2): 137–43. https://doi.org/10.1038/s41567-021-01404-y. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Xu, Yang, and Yong P. Chen. 2021. “Quantum Transport Study in Three-Dimensional Topological Insulator BiSbTeSe2.” Topological Insulator and Related Topics, 73–124. https://doi.org/10.1016/bs.semsem.2021.07.002. | 2021 | 1.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel |
Laurell, Pontus, Allen Scheie, Chiron J. Mukherjee, Michael M. Koza, Mechtild Enderle, Zbigniew Tylczynski, Satoshi Okamoto, Radu Coldea, D. Alan Tennant, and Gonzalo Alvarez. 2021. “Quantifying and Controlling Entanglement in the Quantum Magnet Cs2CoCl4.” Physical Review Letters 127 (3). https://doi.org/10.1103/physrevlett.127.037201. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Wilson, Blake A., Zhaxylyk A. Kudyshev, Alexander V. Kildishev, Sabre Kais, Vladimir M. Shalaev, and Alexandra Boltasseva. 2021. “Machine Learning Framework for Quantum Sampling of Highly Constrained, Continuous Optimization Problems.” Applied Physics Reviews 8 (4): 041418. https://doi.org/10.1063/5.0060481. | 2021 | 1.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design |
Şahinoğlu, Burak, and Rolando D. Somma. 2021. “Hamiltonian Simulation in the Low-Energy Subspace.” Npj Quantum Information 7 (1). https://doi.org/10.1038/s41534-021-00451-w. | 2021 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Sone, Akira, M. Cerezo, Jacob L. Beckey, and Patrick J. Coles. 2021. “Generalized Measure of Quantum Fisher Information.” Physical Review A 104 (6). https://doi.org/10.1103/physreva.104.062602. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Rimal, Gaurab, Caleb Schmidt, Hussein Hijazi, Leonard C. Feldman, Yiting Liu, Elizabeth Skoropata, Jason Lapano, et al. 2021. “Effective Reduction of PdCoO2 Thin Films via Hydrogenation and Sign Tunable Anomalous Hall Effect.” Physical Review Materials 5 (5). https://doi.org/10.1103/physrevmaterials.5.l052001. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Kais, Sabre, Travis Humble, Karol Kowalski, Ivano Tavernelli, Philip Walther, and Jiangfeng Du. 2021. “Editorial: Quantum Information and Quantum Computing for Chemical Systems.” Frontiers in Physics 9 (September). https://doi.org/10.3389/fphy.2021.753618. | 2021 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Myerson-Jain, Nayan E., Stephen Yan, David Weld, and Cenke Xu. 2022. “Construction of Fractal Order and Phase Transition with Rydberg Atoms.” Physical Review Letters 128 (1). https://doi.org/10.1103/physrevlett.128.017601. | 2022 | 1.2.2.03 Kitaev Chain Quantum Simulator |
Curtis, Jonathan B., Andrey Grankin, Nicholas R. Poniatowski, Victor M. Galitski, Prineha Narang, and Eugene Demler. 2022. “Cavity Magnon-Polaritons in Cuprate Parent Compounds.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013101. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Zhang, Qiang, Satoshi Okamoto, German D. Samolyuk, Matthew B. Stone, Alexander I. Kolesnikov, Rui Xue, Jiaqiang Yan, Michael A. McGuire, David Mandrus, and D. Alan Tennant. 2021. “Unusual Exchange Couplings and Intermediate Temperature Weyl State in Co3Sn2S2.” Physical Review Letters 127 (11). https://doi.org/10.1103/physrevlett.127.117201. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Wang, Derek S., Christopher J. Ciccarino, Johannes Flick, and Prineha Narang. 2021. “Hybridized Defects in Solid-State Materials as Artificial Molecules.” ACS Nano 15 (3): 5240–48. https://doi.org/10.1021/acsnano.0c10601. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Philbin, John P., and Prineha Narang. 2021. “Computational Materials Insights Into Solid-State Multiqubit Systems.” PRX Quantum 2 (3). https://doi.org/10.1103/prxquantum.2.030102. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Lapano, Jason, Ondrej Dyck, Andrew R. Lupini, Wonhee Ko, Haoxiang Li, Hu Miao, Ho Nyung Lee, et al. 2021. “Van Der Waals Epitaxy Growth of Bi2Se3 on a Freestanding Monolayer Graphene Membrane: Implications for Layered Materials and Heterostructures.” ACS Applied Nano Materials 4 (8): 7607–13. https://doi.org/10.1021/acsanm.1c01170. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Hasan, M. Zahid, Guoqing Chang, Ilya Belopolski, Guang Bian, Su-Yang Xu, and Jia-Xin Yin. 2021. “Weyl, Dirac and High-Fold Chiral Fermions in Topological Quantum Matter.” Nature Reviews Materials 6 (9): 784–803. https://doi.org/10.1038/s41578-021-00301-3. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Yang, Shuyang, Niels B. M. Schröter, Vladimir N. Strocov, Sergej Schuwalow, Mohana Rajpalk, Keita Ohtani, Peter Krogstrup, et al. 2022. “Electronic Structure of InAs and InSb Surfaces: Density Functional Theory and Angle‐Resolved Photoemission Spectroscopy.” Advanced Quantum Technologies 5 (3): 2100033. https://doi.org/10.1002/qute.202100033. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Zhang, Shang-Shun, Gábor B. Halász, and Cristian D. Batista. 2022. “Theory of the Kitaev Model in a [111] Magnetic Field.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-28014-3. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Kong, Xiangru, Wei Luo, Linyang Li, Mina Yoon, Tom Berlijn, and Liangbo Liang. 2022. “Floquet Band Engineering and Topological Phase Transitions in 1T’ Transition Metal Dichalcogenides.” 2D Materials 9 (2): 025005. https://doi.org/10.1088/2053-1583/ac4957. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Lüpke, Felix, Anh D. Pham, Yi-Fan Zhao, Ling-Jie Zhou, Wenchang Lu, Emil Briggs, Jerzy Bernholc, et al. 2022. “Local Manifestations of Thickness-Dependent Topology and Edge States in the Topological Magnet MnBi2Te4.” Physical Review B 105 (3). https://doi.org/10.1103/physrevb.105.035423. | 2022 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Scheie, A., Pontus Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler. 2022. “Spin-Exchange Hamiltonian and Topological Degeneracies in Elemental Gadolinium.” Physical Review B 105 (10). https://doi.org/10.1103/physrevb.105.104402. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Scheie, A., Pontus Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler. 2022. “Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium.” Physical Review Letters 128 (9). https://doi.org/10.1103/physrevlett.128.097201. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Poniatowski, Nicholas R., Jonathan B. Curtis, Amir Yacoby, and Prineha Narang. 2022. “Spectroscopic Signatures of Time-Reversal Symmetry Breaking Superconductivity.” Communications Physics 5 (1). https://doi.org/10.1038/s42005-022-00819-0. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Ness, Hervé, Ivan A. Sadovskyy, Andrey E. Antipov, Mark van Schilfgaarde, and Roman M. Lutchyn. 2022. “Supercurrent Decay in Ballistic Magnetic Josephson Junctions.” Npj Computational Materials 8 (1). https://doi.org/10.1038/s41524-021-00694-3. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Thomson, Alex, Ina M. Sorensen, Stevan Nadj-Perge, and Jason Alicea. 2022. “Gate-Defined Wires in Twisted Bilayer Graphene: From Electrical Detection of Intervalley Coherence to Internally Engineered Majorana Modes.” Physical Review B 105 (8). https://doi.org/10.1103/physrevb.105.l081405. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Klocke, Kai, Joel E. Moore, Jason Alicea, and Gábor B. Halász. 2022. “Thermal Probes of Phonon-Coupled Kitaev Spin Liquids: From Accurate Extraction of Quantized Edge Transport to Anyon Interferometry.” Physical Review X 12 (1). https://doi.org/10.1103/physrevx.12.011034. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Rosa, Priscila F. S., Ashley Weiland, Shannon S. Fender, Brian L. Scott, Filip Ronning, Joe D. Thompson, Eric D. Bauer, and Sean M. Thomas. 2022. “Single Thermodynamic Transition at 2 K in Superconducting UTe2 Single Crystals.” Communications Materials 3 (1). https://doi.org/10.1038/s43246-022-00254-2. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Bac, S.-K., K. Koller, F. Lux, J. Wang, L. Riney, K. Borisiak, W. Powers, et al. 2022. “Topological Response of the Anomalous Hall Effect in MnBi2Te4 Due to Magnetic Canting.” Npj Quantum Materials 7 (1). https://doi.org/10.1038/s41535-022-00455-5. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Claudino, Daniel, Bo Peng, Nicholas P Bauman, Karol Kowalski, and Travis S Humble. 2021. “Improving the Accuracy and Efficiency of Quantum Connected Moments Expansions *.” Quantum Science and Technology 6 (3): 034012. https://doi.org/10.1088/2058-9565/ac0292. | 2021 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Bauman, Nicholas P., and Karol Kowalski. 2022. “Coupled Cluster Downfolding Methods: The Effect of Double Commutator Terms on the Accuracy of Ground-State Energies.” The Journal of Chemical Physics 156 (9): 094106. https://doi.org/10.1063/5.0076260. | 2022 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Kowalski, Karol. 2021. “Dimensionality Reduction of the Many-Body Problem Using Coupled-Cluster Subsystem Flow Equations: Classical and Quantum Computing Perspective.” Physical Review A 104 (3). https://doi.org/10.1103/physreva.104.032804. | 2021 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Bylaska, Eric J., Duo Song, Nicholas P. Bauman, Karol Kowalski, Daniel Claudino, and Travis S. Humble. 2021. “Quantum Solvers for Plane-Wave Hamiltonians: Abridging Virtual Spaces Through the Optimization of Pairwise Correlations.” Frontiers in Chemistry 9 (March). https://doi.org/10.3389/fchem.2021.603019. | 2021 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Bauman, Nicholas P., and Karol Kowalski. 2022. “Coupled Cluster Downfolding Theory: Towards Universal Many-Body Algorithms for Dimensionality Reduction of Composite Quantum Systems in Chemistry and Materials Science.” Materials Theory 6 (1). https://doi.org/10.1186/s41313-022-00046-8. | 2022 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Selvarajan, Raja, Manas Sajjan, and Sabre Kais. 2022. “Variational Quantum Circuits to Prepare Low Energy Symmetry States.” Symmetry 14 (3): 457. https://doi.org/10.3390/sym14030457. | 2022 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Carbone, Alessandro, Davide Emilio Galli, Mario Motta, and Barbara Jones. 2022. “Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers.” Symmetry 14 (3): 624. https://doi.org/10.3390/sym14030624. | 2022 | 1.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard |
Copenhaver, Justin, and Jukka I. Väyrynen. 2022. “Edge Spin Transport in the Disordered Two-Dimensional Topological Insulator WTe2.” Physical Review B 105 (11). https://doi.org/10.1103/physrevb.105.115402. | 2022 | 1.1.1 Topological Electronic Materials |
Zhang, Jie, Yun-Yi Pai, Jason Lapano, Alessandro R. Mazza, Ho Nyung Lee, Rob G. Moore, Benjamin J. Lawrie, et al. 2021. “Design and Realization of Ohmic and Schottky Interfaces for Oxide Electronics.” Small Science 2 (2): 2100087. https://doi.org/10.1002/smsc.202100087. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Miao, H., Y. L. Wang, J.-X. Yin, J. Zhang, S. Zhang, M. Z. Hasan, R. Yang, et al. 2021. “Hund’s Superconductor Li(Fe,Co)As.” Physical Review B 103 (5). https://doi.org/10.1103/physrevb.103.054503. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Thomas, S. M., C. Stevens, F. B. Santos, S. S. Fender, E. D. Bauer, F. Ronning, J. D. Thompson, A. Huxley, and P. F. S. Rosa. 2021. “Spatially Inhomogeneous Superconductivity in UTe2.” Physical Review B 104 (22). https://doi.org/10.1103/physrevb.104.224501. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Avers, K. E., P. A. Maksimov, P. F. S. Rosa, S. M. Thomas, J. D. Thompson, W. P. Halperin, R. Movshovich, and A. L. Chernyshev. 2021. “Fingerprinting Triangular-Lattice Antiferromagnet by Excitation Gaps.” Physical Review B 103 (18). https://doi.org/10.1103/physrevb.103.l180406. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Yao, Xiong, Matthew Brahlek, Hee Taek Yi, Deepti Jain, Alessandro R. Mazza, Myung-Geun Han, and Seongshik Oh. 2021. “Hybrid Symmetry Epitaxy of the Superconducting Fe(Te,Se) Film on a Topological Insulator.” Nano Letters 21 (15): 6518–24. https://doi.org/10.1021/acs.nanolett.1c01703. | 2021 | 1.1.1 Topological Electronic Materials |
Zhang, Shang-Shun, Gábor B. Halász, Wei Zhu, and Cristian D. Batista. 2021. “Variational Study of the Kitaev-Heisenberg-Gamma Model.” Physical Review B 104 (1). https://doi.org/10.1103/physrevb.104.014411. | 2021 | 1.1.2 Quantum Spin Systems |
Liu, Chunxiao, Gábor B. Halász, and Leon Balents. 2021. “Symmetric U(1) and Z2 Spin Liquids on the Pyrochlore Lattice.” Physical Review B 104 (5). https://doi.org/10.1103/physrevb.104.054401. | 2021 | 1.1.2 Quantum Spin Systems |
Scheie, A., Pontus Laurell, A. M. Samarakoon, B. Lake, S. E. Nagler, G. E. Granroth, S. Okamoto, G. Alvarez, and D. A. Tennant. 2021. “Witnessing Entanglement in Quantum Magnets Using Neutron Scattering.” Physical Review B 103 (22). https://doi.org/10.1103/physrevb.103.224434. | 2021 | 1.1.2 Quantum Spin Systems |
Chirolli, Luca, and Joel E. Moore. 2021. “Enhanced Coherence in Superconducting Circuits via Band Engineering.” Physical Review Letters 126 (18). https://doi.org/10.1103/physrevlett.126.187701. | 2021 | 1.1.1 Topological Electronic Materials |
Wang, Derek S., Tomáš Neuman, and Prineha Narang. 2021. “Spin Emitters beyond the Point Dipole Approximation in Nanomagnonic Cavities.” The Journal of Physical Chemistry C 125 (11): 6222–28. https://doi.org/10.1021/acs.jpcc.0c11536. | 2021 | 1.1.3 Quantum Probes |
Lesser, Omri, Andrew Saydjari, Marie Wesson, Amir Yacoby, and Yuval Oreg. 2021. “Phase-Induced Topological Superconductivity in a Planar Heterostructure.” Proceedings of the National Academy of Sciences 118 (27). https://doi.org/10.1073/pnas.2107377118. | 2021 | 1.1.3 Quantum Probes |
Li, Haoxiang, T. T. Zhang, A. Said, G. Fabbris, D. G. Mazzone, J. Q. Yan, D. Mandrus, et al. 2021. “Giant Phonon Anomalies in the Proximate Kitaev Quantum Spin Liquid α-RuCl3.” Nature Communications 12 (1). https://doi.org/10.1038/s41467-021-23826-1. | 2021 | 1.1.2 Quantum Spin Systems |
Väyrynen, Jukka I., Dmitry I. Pikulin, and Roman M. Lutchyn. 2021. “Majorana Signatures in Charge Transport through a Topological Superconducting Double-Island System.” Physical Review B 103 (20). https://doi.org/10.1103/physrevb.103.205427. | 2021 | 1.1.1 Topological Electronic Materials |
Yin, Jia-Xin, Shuheng H. Pan, and M. Zahid Hasan. 2021. “Probing Topological Quantum Matter with Scanning Tunnelling Microscopy.” Nature Reviews Physics 3 (4): 249–63. https://doi.org/10.1038/s42254-021-00293-7. | 2021 | 1.1.1 Topological Electronic Materials |
Sbierski, Björn, Elizabeth J. Dresselhaus, Joel E. Moore, and Ilya A. Gruzberg. 2021. “Criticality of Two-Dimensional Disordered Dirac Fermions in the Unitary Class and Universality of the Integer Quantum Hall Transition.” Physical Review Letters 126 (7). https://doi.org/10.1103/physrevlett.126.076801. | 2021 | 1.1.1 Topological Electronic Materials |
Kao, Wen-Han, Johannes Knolle, Gábor B. Halász, Roderich Moessner, and Natalia B. Perkins. 2021. “Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid.” Physical Review X 11 (1). https://doi.org/10.1103/physrevx.11.011034. | 2021 | 1.1.2 Quantum Spin Systems |
Tian, Jifa, Cüneyt Şahin, Ireneusz Miotkowski, Michael E. Flatté, and Yong P. Chen. 2021. “Opposite Current-Induced Spin Polarizations in Bulk-Metallic Bi2Se3 and Bulk-Insulating Bi2Te2Se Topological Insulator Thin Flakes.” Physical Review B 103 (3). https://doi.org/10.1103/physrevb.103.035412. | 2021 | 1.1.1 Topological Electronic Materials |
Balz, C., L. Janssen, P. Lampen-Kelley, A. Banerjee, Y. H. Liu, J.-Q. Yan, D. G. Mandrus, M. Vojta, and S. E. Nagler. 2021. “Field-Induced Intermediate Ordered Phase and Anisotropic Interlayer Interactions in α−RuCl3.” Physical Review B 103 (17). https://doi.org/10.1103/physrevb.103.174417. | 2021 | 1.1.2 Quantum Spin Systems |
Schönemann, Rico, Shusaku Imajo, Franziska Weickert, Jiaqiang Yan, David G. Mandrus, Yasumasa Takano, Eric L. Brosha, et al. 2020. “Thermal and Magnetoelastic Properties of α−RuCl3 in the Field-Induced Low-Temperature States.” Physical Review B 102 (21). https://doi.org/10.1103/physrevb.102.214432. | 2020 | 1.1.2 Quantum Spin Systems |
Scheie, A., N. E. Sherman, M. Dupont, S. E. Nagler, M. B. Stone, G. E. Granroth, J. E. Moore, and D. A. Tennant. 2021. “Detection of Kardar–Parisi–Zhang Hydrodynamics in a Quantum Heisenberg Spin-1/2 Chain.” Nature Physics 17 (6): 726–30. https://doi.org/10.1038/s41567-021-01191-6. | 2021 | 1.1.2 Quantum Spin Systems |
Klocke, Kai, David Aasen, Roger S. K. Mong, Eugene A. Demler, and Jason Alicea. 2021. “Time-Domain Anyon Interferometry in Kitaev Honeycomb Spin Liquids and Beyond.” Physical Review Letters 126 (17). https://doi.org/10.1103/physrevlett.126.177204. | 2021 | 1.1.2 Quantum Spin Systems |
Khindanov, Aleksei, Jason Alicea, Patrick Lee, William S. Cole, and Andrey E. Antipov. 2021. “Topological Superconductivity in Nanowires Proximate to a Diffusive Superconductor–Magnetic-Insulator Bilayer.” Physical Review B 103 (13). https://doi.org/10.1103/physrevb.103.134506. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Hamann, Danielle M., Sven P. Rudin, Tomoya Asaba, Filip Ronning, Dmitri Leo M. Cordova, Ping Lu, and David C. Johnson. 2021. “Predicting and Synthesizing Interface Stabilized 2D Layers.” Chemistry of Materials 33 (13): 5076–84. https://doi.org/10.1021/acs.chemmater.1c01064. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |